Testosterone enhances tubuloglomerular feedback by increasing superoxide production in the macula densa.

نویسندگان

  • Yiling Fu
  • Yan Lu
  • Eddie Y Liu
  • Xiaolong Zhu
  • Gouri J Mahajan
  • Deyin Lu
  • Richard J Roman
  • Ruisheng Liu
چکیده

Males have higher prevalence of hypertension and renal injury than females, which may be attributed in part to androgen-mediated effects on renal hemodynamics. Tubuloglomerular feedback (TGF) is an important mechanism in control of renal microcirculation. The present study examines the role of testosterone in the regulation of TGF responses. TGF was measured by micropuncture (change of stop-flow pressure, ΔPsf) in castrated Sprague-Dawley rats. The addition of testosterone (10(-7) mol/l) into the lumen increased the ΔPsf from 10.1 ± 1.2 to 12.2 ± 1.2 mmHg. To determine whether androgen receptors (AR) are involved, mRNA of AR was measured in the macula dense cells isolated by laser capture microdissection from kidneys, and a macula densa-like cell line (MMDD1). AR mRNA was expressed in the macula densa of rats and in MMDD1 cells. We next examined the effects of the AR blocker, flutamide (10(-5) mol/l) on the TGF response. The addition of flutamide blocked the effects of testosterone on TGF. The addition of Tempol (10(-4) mol/l) or polyethylene glycol-superoxide dismutase (100 U/ml) to scavenge superoxide blocked the effect of testosterone to augment TGF. We then applied apocynin to inhibit NAD(P)H oxidase and oxypurinol to inhibit xanthine oxidase and found the testosterone-induced augmentation of TGF was blocked. In additional experiments in MMDD1 cells, we found that testosterone increased O2(-) generation. Apocynin or oxypurinol blocked the testosterone-induced increases of O2(-), while blockade of COX-2 with NS-398 had no effect. These findings suggest that testosterone enhances TGF response by stimulating O2(-) production in macula densa via an AR-dependent pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase.

Superoxide (O(2)(-)) enhances tubuloglomerular feedback by scavenging nitric oxide at the macula densa. However, the singling pathway of O(2)(-) production in the macula densa is not known. We hypothesized that the increase in tubular NaCl concentration that initiates tubuloglomerular feedback induces O(2)(-) production by the macula densa via NAD(P)H oxidase, which is activated by macula densa...

متن کامل

Intracellular pH regulates superoxide production by the macula densa.

We hypothesized that elevated macula densa intracellular pH (pH(i)) during tubuloglomerular feedback enhances O(2)(-) production from NAD(P)H oxidase. Microdissected thick ascending limbs from rabbits with intact macula densa were cannulated and perfused with physiological saline. When luminal NaCl was switched from 10 to 80 mM, O(2)(-) production increased from 0.53 +/- 0.09 to 2.62 +/- 0.54 U...

متن کامل

Inhibition of apical Na+/H+ exchangers on the macula densa cells augments tubuloglomerular feedback.

NO produced by neuronal NO synthase (nNOS) in the macula densa blunts tubuloglomerular feedback (TGF). nNOS activity is strongly pH-dependent. Increasing luminal NaCl concentration increases nNOS activity, NO production, and apical Na+/H+ exchange. Na+/H+ exchange alkalinizes the macula densa. We hypothesized that inhibiting apical Na+/H+ exchange in macula densa cells would augment TGF by blun...

متن کامل

Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback.

BACKGROUND The macula densa senses increasing NaCl concentrations in tubular fluid and increases afferent arteriole tone by a process known as tubuloglomerular feedback (TGF). Nitric oxide (NO) production by macula densa neuronal nitric oxide synthase (nNOS) is enhanced by increasing NaCl in the macula densa lumen, and the NO thus formed inhibits TGF. Blocking apical Na(+)/H(+) exchange with am...

متن کامل

Mechanism by which superoxide potentiates tubuloglomerular feedback.

The macula densa detects changes in NaCl concentration in tubular fluid and transmits a feedback signal, known as tubuloglomerular feedback (TGF), which helps to control glomerular afferent arteriole resistance. We and other investigators have reported that synthesis of NO in the macula densa inhibits TGF. NO can be scavenged by superoxide (O(-)(2)) to form peroxynitrite, effectively reducing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 304 9  شماره 

صفحات  -

تاریخ انتشار 2013